(((x^2)-5*4-7)/3)+6=9

Simple and best practice solution for (((x^2)-5*4-7)/3)+6=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (((x^2)-5*4-7)/3)+6=9 equation:



(((x^2)-5*4-7)/3)+6=9
We move all terms to the left:
(((x^2)-5*4-7)/3)+6-(9)=0
We add all the numbers together, and all the variables
((x^2-5*4-7)/3)-3=0
We multiply all the terms by the denominator
((x^2-5*4-7)-3*3)=0
We calculate terms in parentheses: +((x^2-5*4-7)-3*3), so:
(x^2-5*4-7)-3*3
We add all the numbers together, and all the variables
(x^2-5*4-7)-9
We get rid of parentheses
x^2-7-9-5*4
We add all the numbers together, and all the variables
x^2-36
Back to the equation:
+(x^2-36)
We get rid of parentheses
x^2-36=0
a = 1; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·1·(-36)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*1}=\frac{12}{2} =6 $

See similar equations:

| x3+7=132 | | 3(n=2)=2n+7 | | 39x^2+500x-2500=0 | | 3(n+2)=2n7 | | 8=2/3-3+b | | X+(X+4)+(2x-6)=50 | | 3(x+27)=-5-2(x-3) | | (2x+4)(3x+2)=0 | | 3+5x-2x=6 | | y+(-3y)+1=11 | | 2(-3a+5)=-4(a+3) | | 17a+2(2a+17)=13 | | 17a+2(2a+17)=1 | | 9m+2m+1=34 | | m+6=16 | | 8(2-3y)+3y=26 | | 5a+3(2a-7)=12 | | 3(m+5)=24 | | -9(2x+1)=27 | | -5x+18-7x=90 | | 4x+(-3x)+2=7 | | 3(5x+8)=54 | | 9x-(3x-8)=56 | | -7(3x+5)=-56 | | 2(5x+4)+2=0 | | 6x+2(3x+5)=58 | | -8x+25-5x=116 | | 98n^2+0n-200=0 | | 2x+(-7)+(-9x)=14 | | |3W-4|=|3x-5| | | 10x+2(8x-2)=9 | | 4d+3=14d-7 |

Equations solver categories